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Nerves are an important part in human body which not only controls the 
movement and locomotion of the body but also but also contains sensory 
receptors from other parts of the body which provide continuous feedback to 
the brain and spinal cord. Various diagnostic methods are used to detect the 
specific damage response of the nerve but they do not identify the precise 
location of the nerve damage. A computational nerve model may help to 
identify the exact location of nerve damage. Therefore, in this study the 
organization of a one-dimensional (1D) synthetic single element structural 
and functional model which typify the anatomy and physiology of the nerve 
is proposed. The geometrical model was developed using 1D linear Lagrange 
basis function while the functional model was developed by applying 
external stimulus and solving the bidomain model. The unmyelinated and 
myelinated nerve electrophysiological models were used to generate and 
propagate the action potential in this 1D synthetic single element model 
(SSEM). The nerve conduction velocity (NCV) was also computed in this 
proposed model and found that the myelinated nerve model has a higher 
NCV in contrast to unmyelinated model. This model will provide a platform 
for the development of the complete anatomical and functional model of the 
nerves in the various location of the body and may be helpful for clinician 
and physiologists in the evaluation and diagnosis of the structural as well as 
functional consequences of diabetic neuropathy in its initial stages. 
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1. Introduction 

*Nerves serve a variety of complex and diverse 
tasks grouped into sensory, integrative and motor 
functions. Any impairments and progressive loss of 
structure and function, also known as 
neurodegeneration, can disrupt the sensations of 
touch, smell, taste, hear, sight, pain, heat and can 
hamper activities of speech, memory and body 
movements (Tortora and Derrickson, 2008). 
According to researchers, a large proportion of 
neurodegenerative diseases are associated with 
diabetes mellitus (McKusick, 2007; Ristow, 2004). 
Also, diabetic neuropathies affect up to 50% of 
diabetic patients all over the world (Vinik et al., 
2006). Therefore, the diagnostic importance of 
neurodegenerative disorders has always prompted 
the research interests of clinicians and researchers 
worldwide. 
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The electrophysiology of nerves is of real 
importance here. A nerve which is a collected term 
for several hundred axons, plus associated blood 
vessels and connective tissue can either be classified 
as myelinated nerve or an unmyelinated nerve, 
depending upon the presence or absence of a 
multilayer lipid and protein layer around the nerve 
axon called the myelin sheath. This sheath provides 
electrical insulation and speeds up the nerve 
conduction velocity through the axon (Tortora and 
Derrickson, 2008). Myelinated nerve axons have 
increased diameters of up to 22 µm resulting in 
enhanced conduction velocities of up to 130 mm ms-

1 as compared to unmyelinated nerves having a small 
diameter of up to 1.3 µm and slow conduction 
velocities of approximately 1.5 mm ms-1 (Tortora 
and Derrickson, 2008). This translates that the axon 
diameter and degree of myelination along with 
temperature governs the speed of nerve impulse 
propagation through a nerve fibre (Giuliodori and 
DiCarlo, 2004). 

Diagnostic techniques for diabetic neuropathies 
include both invasive and non-invasive methods but 
lack the ability to locate the exact position of damage 
(Oh, 2007; Kennedy and Inglis, 2002; Oh, 1990; 
Lauria et al., 2005). Our potential solution to this 
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problem is application of mathematics to neuronal 
structure and dynamics in a computer based 
medium; neuronal computational modelling (Dayan 
and Abbott, 2003). Such mathematical and 
computational models offer valuable tools for 
investigating nerve activity across multiple 
structural locations of the human body independent 
of the need for an actual patient.  

Most neuronal mathematical models are 
electrophysiological in nature and there are separate 
models to analyze the electrical activity of 
unmyelinated and myelinated nerve fibres (Rattay 
and Aberham, 1993). Two of the most popular 
electrophysiological are the unmyelinated Hodgkin-
Huxley (HH) and myelinated Chiu, Ritchie, Rogert, 
Stagg and Sweeney (CRRSS) nerve models 
respectively. The HH nerve model was the first 
comprehensive mathematical model of electrical 
excitability in the nerve fibre (Hodgkin and Huxley, 
1952). HH defined the membrane potential from 
non-linear ordinary differential equations (ODEs) of 
a single neuron. In contrast, the CRRSS is suitable for 
simulating the myelinated peripheral sensory nerve 
fibre in rabbits (Chiu et al., 1979; Sweeney et al., 
1987). In this model, experimentation was 
performed on the myelinated nerves for the 
measurement of quantitative membrane currents 
using the voltage clamp analysis (Chiu et al., 1979; 
Sweeney et al., 1987). They used a set of ODEs to 
determine the membrane potential.  Formerly, the 
electrical stimulation in the retinal ganglion cell and 
human cochlear neuron was done by employing HH 
model respectively (Greenberg et al., 1999; Rattay et 
al., 2001). Whereas, the electrical stimulation in the 
sciatic nerve of the lower limb was achieved by 
implementing the CRRSS model (Kim et al., 2007). 

Therefore, this research work describes the 
framework for the development of structural and 
functional model representing the anatomical and 
physiological behaviour of the nerves in the human 
body. This modelling framework presents a practical 
standard in which biophysical nerve activity can be 
included with the structural and functional aspects 
of the nerves in various location of the body. This 
may ultimately prove to be a major diagnostic tool 
for examining the pathological consequences of 
diabetic neuropathy at its initial stages. 

2. Methodology 

In this work, a 1D synthetic single element model 
(SSEM) is proposed and developed. This SSEM 
represents the anatomy and physiology of the nerve 
fibres and their details are given below: 

2.1. Geometrical nerve model  

In this study, a 1D geometrical SSEM with a 
length of 20 mm, characterizing the structure of the 
nerve fibres was developed using a 1D linear 
Lagrange basis function in modelling software 
known as Continuum Mechanics, Image Analysis, 
Signal Processing and System Identification (CMISS). 

The 1D linear Lagrange basis was selected due to the 
fact that nerve fibre act as a cylinder and model 
using 1D cable theory (Segev, 1998). 

2.2. Nerve electrophysiological model  

In this study, two nerve electrophysiological 
models namely unmyelinated HH and myelinated 
CRRSS models were used to simulate the action 
potential generation and propagation along the 
developed 1D SSEM respectively. These models were 
encoded using the CellML modelling benchmark 
(Hedley et al., 2001; Lloyd et al., 2004). Through 
these electrophysiological models, we were able to 
calculate the values of membrane potential, ionic 
currents, conductances, and their respective 
ordinary ODEs in CellML which resulted in the 
calculation of the action potential at a single grid 
point along the 1D SSEM. The details of these 
electrophysiological models are given as follows: 

2.2.1. HH model 

HH were the first physiologists who successfully 
experimented the behaviour of nerve excitation with 
squid giant axon using voltage clamp studies 
(Hodgkin and Huxley, 1952). The voltage gated 
channels of the cell membrane control the ion flow. 
The activation as well as inactivation gates of the 
channels permit the amount of influx and outflux of 
the ions responsible for the production of action 
potential. The equivalent electrical circuit of a HH 
model comprises of time dependent sodium and 
potassium channels, a time independent leakage 
channel, and a membrane capacitance, as shown in 
Fig. 1a. 

 

 a: HH model equivalent electrical circuit 
representing the capacitor as the capacitance of 
the cell membrane, the voltage dependent sodium 
and potassium channels with arrows in their 
respective conductance symbol and voltage 
independent leakage channel with no arrow, the 
reverse potential of each channel i.e., 𝑣𝑁𝑎1, 𝑣𝑘1 and 
𝑣𝐿1 represented by the round shaped battery 
symbol. The arrows for the ionic currents are 
indicated from inside to outside (Hodgkin and 
Huxley, 1952). 

2.2.2. CRRSS model 

The popular CRRSS model describes the 
mammalian myelinated nerve response. The nodes 
of Ranvier are modelled by voltage gated sodium 
channels and the voltage gated potassium channel 
are absent in CRRSS model (Chiu et al., 1979; 
Sweeney et al., 1987). The single cell myelinated 
nerve fibre model is represented in Fig. 1b. 

 
 b: The equivalent cable electric cell model 

represents nodes of Ranvier in a CRRSS model. 
This model shows voltage dependent sodium 
(arrow) channel and a voltage independent 
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leakage channel with no arrows. The reversal 
potential of each channel is designated by vNa2 and 
vL2, illustrated with a round shaped battery 
symbol. The arrows indicates the ionic currents 

flowing from inside to outside of the membrane 
(Chiu et al., 1979). 

The parameters and constants used in the HH and 
CRRSS models for determining the action potential 
along the SSEM are given in Table 1. 

 

 
Fig. 1: Electrophysiological nerve electrical equivalent model 

 

Table 1: Parameters and constants used in simulations of HH and CRRSS Models 

Parameters HH Model CRRSS Model 
 Values and units Values and units 

Membrane capacitance (vm) 0.01 μF mm-2 0.01 μF mm-2 
Reverse potential (vr) -80 mV -80 mV 
Sodium reverse potential (vNa) 115 mV 115.64 mV 
Potassium reverse potential (vk) -12 mV N.A. 
Leakage reverse potential (vL) 10.613 mV -0.01 mV 
Sodium maximum conductance (vNamax) 1.2 mS mm-2 14.45 mS mm-2 
Potassium maximum conductance (vkmax) 0.36 mS mm-2 N.A. 
Leakage maximum conductance (vLmax) 0.03 mS mm-2 1.28 mS mm-2 
Nodal gap length (l) N.A. 1.3 mm 
Diameter of the fibre (d) N.A. 7 µm 

*N.A. denotes not applicable 

 

2.3. Functional nerve model  

In order to translate the structural model into a 
functional model, a flow chart representing the 
various stages involved for action potential 
propagation (APP) along a SSEM is shown in Fig. 2. 
These stages are used for APP as well as NCV 
measurements along the 1D SSEM, characterizing 
the physiology of the nerve fibre. The geometrical 1D 
SSEM opted as an input for APP along the diverse 
parts of the elements. Grid points were allotted in 
the same vicinity as in the local coordinate space for 
this formed geometrical SSEM. The initial calculated 
values of the membrane potential, ionic currents and 
their respective ODEs obtained from the CellML 
based electrophysiological nerve models were 
passed to the equally space single grid points of this 
1D SSEM. In finite element modeling (FEM), 
bidomain model (Tung, 1978) was selected to 
characterize the APP along the single grid point of 
the designed 1D SSEM by applying extracellular 
stimulus as it was formerly used to model neural 
tissue electrical activity (Kim et al., 2007). External 
stimulation was applied at time t = 0 and the 
membrane voltage value returned to the CellML 
based electrophysiological nerve model which 
computed updated values of membrane potential, 

ionic currents and their particular ODEs and this 
parameters value were once more reassigned to the 
bidomain model for computing newer values of the 
action potential. The LSODA numerical integration 
technique was implemented in order to solve the 
differential equation implicitly of the 
electrophysiological nerve models for ionic current 
(Hindmarsh, 1983) and compute the action potential 
of each grid point in the element iteratively to a final 
desired time interval. The final APP output obtained 
from the bidomain model was then exported to the 
front end of CMISS namely continuum mechanics 
graphical user interface (CMGUI) and to UNEMAP. 
CMGUI is used for the 3D visualization of APP along 
the 1D nerve geometrical model and APP traces at 
different location (grid points) were displayed in 
UNEMAP. 

3. Results and discussions 

The 1D SSEM illustrating the structure of the 
nerve fibre is shown in Fig. 3. This 1D element has a 
length of 20 mm and divided into regular, evenly 
space grid points. 

For functional model development, the 
aforementioned methodology was implemented in 
Fig. 3. There were 70 grid points in this 1D SSEM 
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that gave a spatial resolution of 0.29 mm. Here, an 
assumption was done that the diameter remained 
steady along the entire 1D SSEM. An extracellular 
stimulus current with a magnitude of 40000 µA mm-1 
and duration of 0.5 ms was injected into the left end 
of the nerve fibre model using bidomain model (1D 
element) as shown in Fig. 4.  

This magnitude of extracellular stimulus was 
strong enough to depolarize the nerve fibre and 
cause the APP along the representative 1D element 
nerve model that used both the unmyelinated HH 
and myelinated CRRSS models. Fig. 4 illustrates that 
the membrane voltage is at resting potential at 0 ms 

(blue sphere) with no extracellular stimulus. The 
membrane potential then starts propagating from 0 
ms onwards. This subsequent APP is shown in Fig. 4. 
As a whole, Fig. 4 represents 1D SSEM setup using 
linear Lagrange basis function representing the 
physiology of the nerve fibre with regular, evenly 
spaced 0.29 mm grid point space.  

This is represented at 0 ms, which is the resting 
state of the fibre. Action potential was propagated 
along a 1D SSEM from the leftmost grid point to the 
right end of the nerve fibres using HH model at 
various time steps i.e., 0.1 ms, 1 ms, and 3 ms. 

 

 
Fig. 2: Flow chart representing the functional model development for APP along the 1D SSEM 

 
Fig. 3: 1D single element model with regular space grid points 

 
The NCV was used to characterize the action 

potential movement along the entire length of the 
SSEM of the nerve fibre and to determine the 
convergence of the bidomain 1D SSEM. It is 
calculated by (Eq. 1), 

 

𝑁𝐶𝑉 =
∑ 𝐷

𝑡𝑓−𝑡𝑠
                       (1) 

 

where,  D indicates the sum of the distances of 
individual grid points along the 1D SSEM of the 
nerve fibre,  tf represents the final time at which the 
maximum amplitude of the action potential reached 

the other boundary end of the SSEM of the nerve 
fibre and ts is the start time at which the 
extracellular stimulus current was applied to 
activate the bidomain nerve fibre. 

The NCV at the various locations in the developed 
1D SSEM was then determined using Eq. 1 using HH 
and CRRSS electrophysiological nerve models and is 
presented in Table 2. From Table 2, it can be easily 
determined that the NCV in the developed 1D SSEM 
was higher using myelinated CRRSS nerve model in 
contrast to unmyelinated HH nerve model over the 
same location i.e., distance of this 1D SSEM. 
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Fig. 4: 1D SSEM setup using linear Lagrange basis  

 

Table 2: NCV measurements at different locations in the 1D SSEM using HH and CRRSS model 

Distance (mm) 
HH Model CRRSS Model 

Time (ms) NCV (mm ms-1) Time (ms) NCV (mm ms-1) 
4.3 1 4.3 0.2 21.5 
8.6 1.9 4.5 0.36 23.9 

12.9 2.8 4.6 0.5 25.8 

 

Furthermore, a simulation research was executed 
to obtain numerical convergence in this 20 mm 
length 1D SSEM by varying the spatial resolution of 
the grid points. So, the grid points varied between 20 
points (∆𝑥 = 1𝑚𝑚) to 100 points (∆𝑥 = 0.2𝑚𝑚). 
The NCV was then determined using Eq. 1 based on 
this range of spatial resolution by applying the 
simulations iteratively with a nerve fibre diameter of 
5 µm and the intracellular and extracellular 
conductivities of 50 mS mm-1 respectively. The effect 
of spatial resolutions on NCV from both the 
unmyelinated HH model and the myelinated CRRSS 
model is shown in Fig. 5. It can be concluded from 

Fig. 5 that the NCV declined as the number of spatial 
resolutions (grid point per mm) increased. It 
stopped declining as soon as the spatial resolution 
convergence of 0.29 mm was reached for both the 
HH and the CRRSS models respectively. In addition, 
the convergence of NCV achieved from the CRRSS 
model was higher than the NCV obtained from the 
HH model. This might be due to the certainty that it 
has a myelin sheath and also contains nodes of 
Ranvier (Giuliodori and DiCarlo, 2004). The 
converged NCV was 25.6 mm ms-1 and 7.1 mm ms-1 
for the CRRSS and the HH models respectively. 

 

 
Fig. 5: Convergence test for the spatial resolution using the bidomain model to examine the NCV in a 1D SSEM using the 

CRRSS and the HH model. With the increase in grid points per mm, the NCV was decreased. The minimum converged spatial 
resolution was ~3.5 grid point per mm or grid point spacing of ~0.29 mm 

 

4. Conclusion 

A framework for the development of structural 
and functional models, which embodies the anatomy 

and physiology of the single nerve fibre, has been 
described. This framework presents a podium for 
the development of computational nerve models of 
the nerve networks in different regions of the human 
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body. These models can be used to examine normal 
and abnormal neuronal function. This can eventually 
prove to be a useful diagnostic tool for investigating 
the pathological outcomes of diabetic neuropathy 
such as diabetic ulcers and other related conditions. 
In the prospective works, an electromechanical 
coupling between loading and sensory nerve 
feedback can be made in healthy as well as diabetic 
neuropathy patients. 
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